Operations on a Maintenance Centre Layout (Part 2 – Ops Plan)


This is the second of three posts on maintenance centre layouts, that started with Aaron Riley’s Metra service centre layout.  In this post, I’m focusing on developing an operations plan that suits that layout. This involves working through background information on the prototype, its operations and the methods they use to get train sets out of the yard and onto the main for timetable services.


Developing an Operating Plan

On a layout designed for operation, the focus is on mimicking only those prototype operations that suit your interest. On a small switching layout, I don’t want to do paperwork, attend staff meetings, or write reports for senior managers when I could be switching. Your choices may differ obviously so knock yourself out writing those reports, while I keep switching.

On a layout such as Aaron’s, his focus would be on servicing the train sets. What I’m defining as a train set is:  “a locomotive and a ‘number’ of bi-level commuter cars“.

Photo 1: Gallery Type Bi-Level Passenger Car for METRA (Image credit: Nippon Sharyo,Ltd.)
Photo 1: Gallery Type Bi-Level Passenger Car for METRA (Image credit: Nippon Sharyo,Ltd.)

I’m guessing that in Aaron’s space that number will be in the range of 3 to 4 cars maximum. A train with a larger number of cars would overwhelm the space available and cause switching issues that could not be overcome. It is worth keeping in mind that when you design operations for small layouts, siding lengths are the key to play value. Too much train or too short a siding or spur and operations grind to a halt. The key takeaway is: ‘design operations to the size of your layout’.

Some prototype background information

The core of real-world transit operation planning is to keep passengers moving, and paying. To do that the operations department, the people responsible for staffing and operating train sets in passenger service, focus on ‘availability’. Availability means a train set is available to run a timetabled service. Each timetabled service has a ‘run or train number’ which you’ll find in the employee timetable. Occasionally you’ll find these in the publicly available timetable, but this is rare.

Ideally, operators want 100 per cent availability, which means that all trains run according to the timetable; reality is not often this simple. Locomotives, passenger trains and the infrastructure they rely on (tracks, signalling, etc.) are complex machines requiring much care and attention to maintain peak operation.

In addition, there are also external factors beyond the operator’s control, such as pedestrians and motor vehicles interfacing with the right of way, natural and unnatural events, and things simply don’t always go to plan.

Prototype practices drive model operations

Prototype operator’s work using a decision hierarchy focused on quick turnaround. This ensures that timetabled trains run, thereby maximising availability. Understanding the prototype’s decision hierarchy helps in designing a modelling operations plan. You don’t need a complete understanding of the process to make sense of it.

A simplified view of the decision tree can help guide how we operate a layout of this type. I’m greatly simplifying the process and not accounting for regular mechanical examinations however, the prototype operator will use a decision tree similar to that presented below.

Working the decision tree to understand operations

Situation: A train set arrives back into the facility after its assigned run at the end of the day or shift. The operations management staff (called Starters, or Officers Production [OPs] here in Australia) will then run through the following decision tree to assess the status of the fleet assigned to their location to ensure availability and to plan maintenance and cleaning activities to meet future availability needs.

  • Step 1 – Is the train set in working order and is it ready to run out now:
    1. Yes, go to STEP 2, or
    2. No, go to STEP 3.
  • Step 2 – If the answer is a ‘YES’ what is the next step for the train set:
    1. If needed for a timetabled service, the train set runs out of the yard and onto the network, go to END
    2. If not needed for a timetabled service, the train set is placed onto a storage track ready for its next use, go to END
  • Step 3 – If the answer is a ‘NO’ what is the needed step to get a train set ready to run out:
    1. If it is in need of cleaning, clean it, then clear it for service, go to STEP 1
    2. If it is need of minor (running or regulated interval) maintenance (sanding, fuelling, replacing lights, fixing a seat, etc.), perform the maintenance, then clear it for service, go to STEP 1
    3. If it is in need of mid-level (out of service local specialist shop) maintenance, cut out the car or locomotive and move it to the service track for repair, then clear it for service, go to STEP 1
    4. If it is in need of major (heavy out of service upstream) maintenance, cut out the car or locomotive and transfer it to the upstream maintenance centre, and await its return, go to STEP 5
    5. If the train set is ‘short’ (as in missing a car, or cars, or a locomotive), combine a spare car or cars, or a locomotive to form a full set, then clear it for service, go to STEP 1
  • Step 4 – For cars or locomotives received from the upstream maintenance centre, determine:
    1. Is the car or locomotive needed immediately for a ‘short’ set
      • Yes – Switch the car or locomotive into the short set – go to STEP 1
      • No – Switch the car or locomotive to a storage track – go to STEP 5
  • Step 5 – return to STEP 1 and apply to the next train set

Rinse and repeat for each train set, locomotive and car until the answer at step 1 is YES.

I have not included mandated FRA mandated safety checks (or your local version thereof) into the operating plan; you certainly can do so. it is another level of operations and adds to the complexity of your switching operations as locos are pulled from service at their periodic intervals.


What’s in the next post?

In the next post, I’ll focus on game theory and how it can improve small layout operations for the long term.


Resources

Staying in Contact

Interested in keeping in touch or discussing posts, pages and ideas?  You can do that in several ways:

6 thoughts on “Operations on a Maintenance Centre Layout (Part 2 – Ops Plan)”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.